

Langatate (or LGT) is a piezoelctric material that belongs to the same symmetry class as quartz. This is an advantage as all the well-known models developed on quartz can be easily transfered.

It is a very stable material (mechanical and chemical) without any phase transition up to its melting temperature (~1500°C) which allows the use of langatate for harsh environment and also for the high temperature steps sometimes required during the fabrication of components.

In addition, langatate is a non-pyroelectric and non-ferroelectric material. Its factors of merit make an excellent candidate for various applications: direct piezoelectric sensors, SAW sensors, resonators, transductors, actuators.

	Langatate (LGT)*
Chemical formula	La ₃ Ga _{5.5} Ta _{0.5} O ₁₄
Density	6,13 g cm ⁻³
Melting temperature	~1500°C
Symmetry Class	32
Lattice parameters (at room temperature)	a = 8,229 Å, c = 5,123 Å
Mohs Hardness	~6,5
Coefficients of thermal expansion (Cristal Innov measurement)	$a_a = 7.9 \times 10^{-6}$
	$a_c = 6.4 \times 10^{-6}$
Piezoelectric constants* * rom Bohm et al, 2000; signs depend on the chosen convention for X+ axis	d ₁₁ =7,06 pC/N d ₁₄ = - 4,32 pC/N
Relative permittivity	$ \mathcal{E}_{11} = 19,9 \\ \mathcal{E}_{33} = 79,1 $
Resistivity Ω .cm (measured in air)	4-5x10 ¹⁴
Elastic Modulus (Gpa) (source : Davulis and Pereira da Cunha, 2013)	$C_{11} = 192$ $C_{12} = 111$ $C_{13} = 103$ $C_{14} = 13,8$ $C_{33} = 264$ $C_{44} = 51$

CUTTING AND WAFERING

Orientation X, Y and Z: precision down to 5'

Single and double rotation possible upon request

Dimensions Wafers: up to 2" - Squares: up to 1,5"

Surface Polished or lapped

Thickness From 0,4 to a few mm upon request

Flats Any orientation X,Y, Z with precision down to 5' -

Any dimensions.

MICRO MACHINING - RINGS

Orientation X, Y, Z: precision down to 5'

Dimensions External diameter: 5-20 mm.

Precision down to 0,05 mm.

Internal diameter: 2-15 mm.

Precision down to 0,05 mm.

Surface Lapped : roughness 0,1-0,7 μm

Thickness 0,4-0,8 mm. Precision down to 0,04 mm. Flats Any orientation X, Y, Z. Precision down to 1°

Coatings Thickness precision in the range of 20%.

